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LETTER TO THE EDITOR 

Geometric foundations of a new conservation law discovered 
by Hojman 

F Gondez-GascQ 
Depa."Io di Flsica Tdrica U. Facultad de Ciencias Flsicas, Univasidad Complurense. 
uM40 Madrid. Spain 

Received 14 September 1993 

Abstract. Thc geometric fwndations of a recent new commation law obtained by H o j m .  
for semod-order d i k t i a J  equations, are given. 

In a recent paper [l], Hojman obtained a new conservation law holding for a set of second- 
order differential equations 

&=f i ( t ,q ,@)  i = l ,  ..., n (1) 

where the forces fi satisfy: 

and X is the vector-field associated canonically to (1). given by: 

a n  a 
aqi 

x = 1 .  -+E[++ at fi. (3) 

and A(q)  is a function of 41,. . . ,4.. 
Under the above hypothesis, and assuming that a symmetry vector 

of equations (1) is known, Hojman obtained a new conservation law for system (l), namely: 

That is, formula (4) is constant along trajectories of (1). 
We present here the geometrical basis of this conservation law. In doing it we shall see 

that Hojman's hypothesis can be broadened, in order to include the w e  in which A is a 
hc t ion  oft ,  q, Q. and not only of the q as Hojman did. 

0305-4470/94/02W59+07.S0 0 1994 IOP Publishing Ltd L59 



L60 Letter to the Editor 

Consider the local volume form given by: 

R = dt A dqr A . . . A dq. A dq, A . .  . A dq. 

and the Lie derivatives operator Ly along the streamlines of an arbitrary vector-field Y [2]. 
Using Q and Ly we define the divergence of a vector-field Y in the usual form: 

In particular, when Y is the vector-field X defined in (3) we have: 

and therefore we can write (2) in the form: 

LxQ + X ( h A ) .  Q GO. (8) 

[X. SI] = 0 (9) 

On the other hand, it is well known that if S is a symmetry vector of (1) we have: 

where S' is the first extension of S, given by: 

and where [, ] stands for the Lie-Jacobi bracket of vector-fields. 
Now, from (9) one immediately has: 

LXLSl . Q = LSl L s .  n (11) 

(12) 

and therefore 

Lx(divS'). Q = Lst(divX). Q = Ls~(-x(lnA)) = Lx(-Ls@nA)) 

which can be written as: 

Lx(div S1 + Lsr (In A)) = 0 

that is, 

div(S') + L a  (Inn) (14) 

is a new conservation law for X. 
Taldng (IO) into account it can be immediately checked that (14) is the conservation 

law obtained by Hojman. 
Note that when obtaining the conservation law (14) we have not assumed that A is a 

function of only 41.. . ., q,,, as Hojman did. Our reasoning is valid, in fact, when A is a 
function of I, q, g. Therefore the conservation law obtained here holds under a slightly 
broader hypothesis than those considered by Hojman. 
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